US009046916B2

a2 United States Patent 10) Patent No.: US 9,046,916 B2
Ruehle 45) Date of Patent: Jun. 2, 2015
(54) CACHE PREFETCH FOR NFA (58) Field of Classification Search
INSTRUCTIONS CPC ... GOG6F 9/00; GOGF 12/0646; GOGF 12/0802;
GOG6F 12/0868
(71) Applicant: Intel Corporation, Santa Clara, CA See application file for complete search history.
Us) (56) References Cited
(72) Inventor: Michael Ruehle, Albuquerque, NM (US) U.S. PATENT DOCUMENTS
(73) Assignee: Intel Corporation, Santa Clara, CA 6,490,652 Bl* 12/2002 Van Hook et al. 711/118
(US) 6,745,291 B1* 6/2004 York 711/128
7,805,392 B1* 9/2010 Steeleetal. 706/48
N ?
(*) Notice: Subject to any disclaimer, the term of this 8,516.456 Bl 82013 Starovoitov et al. - 717141
patent is extended or adjusted under 35 * cited by examiner
U.S.C. 154(b) by 295 days.
Primary Examiner — Aracelis Ruiz
(21) Appl. No.: 13/669,528 (74) Attorney, Agent, or Firm — Douglas A. Dallmann
(22) Filed: Nov. 6, 2012 (7 ABSTRACT
Disclosed is a method of pre-fetching NFA instructions to an
(65) Prior Publication Data NFA cell array. The method and system fetch instructions for
use in an [L1 cache during NFA instruction execution. Suc-
US 2014/0129775 Al May 8, 2014 cessive instructions from a current active state are fetched and
(51) Int.Cl loaded in the .1 cache. Disclosed is a system comprising an
G0;$ F 1 208 (2006.01) external memory, a cache line fetcher, and an 1.1 cache where
GO6F 9/00 (2006.01) the L1 cache is accessible and searchable by an NFA cell
GO6F 12/06 (200 6. 01) array and where successive instructions from a current active
5 US. Cl ’ state in the NFA are fetched from external memory in an
(2) CPC : GOGF 9/00 (2013.01): GOGF 12/0802 atomic cache line manner into a plurality of banks in the [.1
(2013.01); GOGF 12/0868 (2013.01); Go6F D
12/0646 (2013.01) 18 Claims, 1 Drawing Sheet
100 \
122
130,
\ Extemal < Instruction
Memory Address
Cache
150 140\ Line
\ Rotate Felch
—9 Bank miss signals M
0 120
160 0 Bank
1
Cable \\j
Line — Bank
Address @ 2
Bank
O} 3

\ 112

110

US 9,046,916 B2

Jun. 2, 2015

U.S. Patent

(48!

011

< SSOIpPY
\ﬂ_ oury

S[eUFIS SSTW

198D
: A H v : 091

0TI
AN v
Uo10d
aury
oyor)
SSIPPY
uornnIsuy
[44! -

KIOWN
[euIaIXy

B0y //
/ 0s1

vl

0¢cl

US 9,046,916 B2

1

CACHE PREFETCH FOR NFA
INSTRUCTIONS

BACKGROUND OF THE INVENTION

With the maturation of computer and networking technol-
ogy, the volume and types of data transmitted on the various
networks have grown considerably. For example, symbols in
various formats may be used to represent data. These symbols
may be in textual forms, such as ASCII, EBCDIC, 8-bit
character sets or Unicode multi-byte characters, for example.
Data may also be stored and transmitted in specialized binary
formats representing executable code, sound, images, and
video, for example. Along with the growth in the volume and
types of data used in network communications, a need to
process, understand, and transform the data has also
increased. For example, the World Wide Web and the Internet
comprise thousands of gateways, routers, switches, bridges
and hubs that interconnect millions of computers. Informa-
tion is exchanged using numerous high level protocols like
SMTP, MIME, HTTP and FTP on top of low level protocols
like TCP, IP or MAP. Further, instructions in other languages
may be included with these standards, such as Java and Visual
Basic. As information is transported across a network, there
are numerous instances when information may be interpreted
to make routing decisions. It is common for protocols to be
organized in a matter resulting in protocol specific headers
and unrestricted payloads. Subdivision of the packet infor-
mation into packets and providing each packet with a header
is also common at the lowest level. This enables the routing
information to be at a fixed location thus making it easy for
routing hardware to find and interpret the information.

SUMMARY OF THE INVENTION

An embodiment of the invention may therefore comprise a
method for fetching instructions for an NFA in a dynamically
configurable NFA cell array, the method comprising request-
ing an instruction from an L1 cache for an NFA state in the
cell array, determining, by the cache, if a cache line for the
requested instruction is present in the cache and if at least one
successive cache line is present in the cache, if the cache line
is absent, fetching the cache line from an external memory, if
the at least one successive cache line is absent, fetching the
successive cache line from an external memory and if the
cache line is present, returning the requested instruction.

An embodiment of the invention may further comprise a
system for pre-fetching instructions for an NFA in a dynami-
cally configurable NFA cell array, comprising an external
memory that stores all of the NFA instructions, a cache line
fetcher enabled to access instructions from the external
memory and an [.1 cache, wherein the .1 cache comprises a
plurality of separately addressable tag memory banks, the
banks being enabled to store tags for a predetermined number
cache lines from the external memory in an interleaved man-
ner, wherein the L1 cache is accessible and searchable by the
NFA cell array and each time the 1 cache is accessed to read
an NFA instruction, multiple tag memory banks are accessed
in parallel.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG.1is an embodiment of an architecture for pre-fetching
NFA instructions.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

With the increasing nature of the transmission of informa-
tion, there is an increasing need to be able to identify the

40

45

55

65

2

contents and nature of the information as it travels across
servers and networks. Once information arrives at a server,
having gone through all of the routing, processing and filter-
ing along the way, it is typically further processed. This
further processing necessarily needs to be high speed in
nature.

The first processing step that is typically required by pro-
tocols, filtering operations, and document type handlers is to
organize sequences of symbols into meaningful, application
specific classifications. Different applications use different
terminology to describe this process. Text oriented applica-
tions typically call this type of processing lexical analysis.
Other applications that handle non-text or mixed data types
call the process pattern matching.

Performing lexical analysis or pattern matching is gener-
ally a computationally expensive step. This is because every
symbol of information needs to be examined and disposi-
tioned.

Regular expressions are well known in the prior art and are
used for pattern matching and lexical analysis. Regular
expressions provides a concise and flexible means for
“matching” strings of text, such as particular characters,
words, or patterns of characters. Abbreviations for “regular
expression” include “regex” and “regexp” and these abbre-
viations may be used throughout this specification inter-
changeably with each other and with the term “regular
expression”. A regular expression is written in a formal lan-
guage that can be interpreted by a regular expression proces-
sor, which can be a program that examines text or other
characters in and identifies parts that match the provided rules
of'the regular expression. A regular expression in its simplest
expression is a pattern. It is an expression that specifies a set
of strings

Examples of specifications that could be expressed in a
regular expression are as follows:

the sequence of characters “car” appearing consecutively

in any context, such as in “car”, “cartoon”, or “bicarbon-
ate”

the sequence of characters “car” occurring in that order

with other characters between them, such as in “Ice-
lander” or “chandler”

the word “car” when it appears as an isolated word

the word “car” when preceded by the word “blue” or “red”

the word “car” when not preceded by the word “motor”

a dollar sign immediately followed by one or more digits,

and then optionally a period and exactly two more digits
(for example, “$100” or “$245.98”).
These sequences are simple and are intended only for pur-
poses of example. Specifications of great complexity are con-
veyable by regular expressions.

Regular expressions are used by many text editors, utilities,
and programming languages to search and manipulate text
based on patterns. Some of these languages, including Perl,
Ruby, AWK, and Tcl and may integrate regular expressions
into the syntax of the core language itself. Other program-
ming languages like .NET languages, Java, and Python pro-
vide regular expressions through standard libraries.

To match regular expressions or similar pattern matching
rules, two main types of state machines may be constructed,
nondeterministic and deterministic finite automata (NFAs
and DFAs). NFAs for multiple rules are commonly executed
separately, either in a sequential manner as in software, or in
a parallel manner as in hardware.

Regular expressions, or similar rules, may be matched by
executing an NFA (nondeterministic finite automaton) by the
Thompson NFA execution algorithm in a dynamically recon-
figurable hardware NFA cell array. This may be implemented

US 9,046,916 B2

3

as described in U.S. Pat. No. 7,899,304 to Ruehle, which is
incorporated herein by reference in its entirety. The NFA cell
array may be aided by matching the beginnings of most rules
using an external engine, which may utilize a DFA (determin-
istic finite automation) or hash tables, where both the external
engine and the NFA cell array examine the same stream of
input symbols. However, the external engine, or other meth-
odology as mentioned, may lead the NFA by a number of
symbols. This number of symbols may vary depending on
various factors, as is understood in the art. In operation, the
external engine will match the beginning of a rule somewhere
in the input stream. An “initial state” resulting from the exter-
nal match, is dynamically loaded into the NFA cell array. The
loaded state will be activated at an appropriate time in the
NFA cell array. If the loaded state continues to match in the
NFA, it may transition to next states. The next states will also
have been loaded into the NFA cell array. This will continue
until an accepting state is reached, which will complete the
rule match and report same.

NFA states are represented in the NFA cell array by NFA
instructions. In order to load a state as indicated above, one or
more instructions representing the state must first be accessed
in an L1C (level-one cache) inside the NFA engine. These
instructions are then decoded and used to program NFA cells
to represent the indicated state. An L1 Cache is utilized
because the rule set may be large and each rule may be long
and complex. Accordingly, the total number of instructions
may be very large. When accessed, the .1 Cache, using any
cache architecture as is understood in the art, may “hit”,
meaning the accessed instruction is present in a small local
memory. If so, the instruction will be returned relatively
quickly, e.g. 5 clock cycles. The instruction access may also
“miss”, meaning the accessed instruction is not present, and
must be fetched from an external memory, which may take a
relatively longer time, e.g. 60 clock cycles.

Throughout this description, the term L1 cache is used to
denote a common memory location used for NFAs and for
fetching instructions from an external memory. It is under-
stood that embodiments of this invention may pertain to any
cache storing NFA instructions. Accordingly, “L.1” is not
limiting to any particular type of memory utilized, such as an
L2 cache. “L1 cache”, as used throughout, includes all such
cache type memories.

Initial state accesses are very tolerant of .1 cache misses
because the external engine typically runs substantially ahead
in the input stream, such as 100 symbols ahead of the NFA
cell array. This lead gives the [.1 cache time to resolve a miss
before the initial state instructions are actually needed in the
cell array. Even multiple overlapping L1 cache misses for
initial states may be well tolerated since multiple overlapping
accesses may be made to the external memory. Next state
instruction accesses are more sensitive to L1 cache misses.
This is because a next-state access typically occurs when the
NFA cell array is already at a position in the input steam
where the previous state is active. The next state may be
needed immediately or in a shorter period of time than it takes
to access an instruction from external memory.

In an embodiment of the invention, cache line pre-fetch
using multiple independently addressable tag memory banks
is employed. Flags may be encoded in the last NFA instruc-
tion associated with each regular expression and used by the
cache to limit the pre-fetch. Maximum pre-fetch (tail length)
fields encoded in the NFA or the external engine, or both, may
be used to limit pre-fetch of an NFA instruction cache.

FIG.1is an embodiment of an architecture for pre-fetching
NFA instructions. The architecture 100 has a number of sepa-
rately addressable tag memory banks (B) 110. Miss signals

10

15

20

25

30

35

40

45

50

55

60

65

4

112 are receivable from the tag memory banks 110 by cache
line fetch device 120. The cache line fetch device is enabled
to provide an instruction address 122 to an external memory
130 which contains all of the instructions for the NFA in use.
The external memory 130 contains all of the instructions for
every state in the NFA. In another embodiment, the external
memory 130 may be a level-two cache, which may not con-
tain all of the instructions, but rather may need to access a still
higher level memory or cache for some instructions. A cache
line address 160 has N consecutive offsets 150 from 0 to B-1
added, and the resulting sequence of B consecutive cache line
addresses is rotated 140 according to lower bits in the cache
line address 160, so that each cache line address is directed to
the proper bank. Each of the B rotated 140 cache line
addresses has lower bits dropped, to form a row address to
access the corresponding tag memory bank 110.

In a cache line pre-fetch (CLP) system, and methodology,
two parameters are determined for any particular implemen-
tation of the architecture 100. The first is the number of
instructions (N) in a cache line. The second is the number of
separately addressable tag memory banks (B) 110 that the [.1
cache tag memory will be divided into. N and B may both be
powers of two, i.e. 2, 4, 8, 16, etc. Since the B tag memory
banks can be accessed in parallel to check for the presence of
N instructions each, the product of NxB is approximately the
number of instructions beyond the last accessed instruction
that will be pre-fetched so that they are available in the L1
Cache. This value, NxB, may be predetermined to exceed the
typical or worst case number of instructions consumed in the
time required to fetch instructions from an external memory
130. For example, if external memory accesses take 60
cycles, and no more than one instruction per 5 cycles is
typically consumed while matching a rule, then 12 instruc-
tions (60+5) may be consumed during the expected access
latency. Accordingly NxB=16 may be an appropriate power-
of-two product.

The L1 cache may be a W-way set associative cache, e.g.
W=4. This means that the cache line memory locations are
organized into W columns and some number R of rows. For
example, if N=4 and W=4, and the [.1 cache holds 1024
instructions, then there are 256 lines (1024+4) which means
there are 64 rows (256+4). Each accessed instruction will be
found within an associated cache line. The instruction address
is typically converted to a cache line address by dropping a
number of least significant bits equal to log 2(N). The cache
line address is converted to a cache row address. This is
typically done by dropping upper bits to leave the necessary
number of lower bits to address a single row, e.g. 6 lower bits
areretained when R=64 (2°6). All W=4 columns (ways) of the
corresponding cache row are then examined to see if they
contain the accessed cache line. They may contain different
cache lines with the same lower address bits, or they may be
empty, which is common for caches.

The B tag memory banks contain cache line tags that iden-
tify which cache lines currently occupy the .1 Cache. The R
cache rows are divided equally among the B banks. Each bank
has W columns, but only R/B rows. For example, if N=4,
W=4, R=64, and B=4, then each bank has 4 columns and 16
rows. To check the cache for an accessed cache line, only one
bank, containing the associated row needs to be accessed. The
cache rows are interleaved among the banks, so that any B
consecutive cache lines (or rows) reside as one row in each
bank. Accordingly, the tags for any series of consecutive
cache lines which is equal to the number of tag memory banks
will reside as one tag in each bank. The low log 2(B) bits of

US 9,046,916 B2

5

any row address may be used to select a bank and the remain-
ing upper row address bits may be used as an address within
that bank.

Eachtime the .1 Cacheis accessed to read an NFA instruc-
tion, which falls within some N-instruction cache line (L), all
B tag memory banks are accessed in parallel to search for
cachelines L, L+1,L+2, ... L+B-1. For example, if instruc-
tion address 25 is accessed, with N=4, W=4, and B=4, drop-
ping two low bits (dividing by N=4), instruction 25 is found to
be in cache line L=6. Line 6 will map to bank 2, as (L. mod
B)=(6 mod 4)=2. The L.1 cache then accesses all 4 banks to
search for 4 cache lines as follows: bank 2 for line 6, bank 3
for line 7, bank O for line 8, and bank 1 for line 9. Referring to
FIG. 1, this example corresponds to cache line address 160 of
6 having offsets of +0 through +3 added 150, obtaining line
addresses {6, 7, 8, 9}, followed by a rotation 140 of (6 mod
4)=2 positions, yielding the line addresses {8, 9, 6, 7}, map-
ping to banks {0, 1, 2, 3} respectively.

In a single access cycle, the L1 cache will be searched for
the cache line containing the accessed instruction and also the
next B—1 cache lines. A hit or miss is determined separately
for each of these lines. If there is a miss, then one or more
cache lines are fetched from the external memory to fill all
missed lines into the [.1 Cache. Only the first line (1) is
needed to respond to the instruction access. The remaining
B-1 lines will represent the pre-fetch. If Line L is a hit, then
the requested instruction will be returned immediately with-
out waiting for any pre-fetch misses to be filled. Otherwise,
the requested instruction should be returned after line L is
filled from external memory. In an embodiment, if multiple of
the B accessed cache lines miss, they may be fetched from the
external memory in a single burst, from the first missed line to
the last missed line, because typical external memories oper-
ate more efficiently in larger bursts. In another embodiment,
one burst may be generated for each contiguous segment of
missed cache lines.

If new instructions are accessed substantially sequentially
and not too frequently, cache line pre-fetch ensures that
although initial state accesses may miss the [.1 cache, next
state accesses will hit. If instructions are accessed signifi-
cantly out of order, for example with a jump of 10 or 20
instructions, or if next states are accessed very rapidly, then
cache line pre-fetch may not always maintain next state
accesses. Some misses may result. However, L1 Cache next-
state miss rates are minimized. Moreover, next-state L1
Cache misses that occur with CLP will also have minimized
delays to return instructions. This is because a missed instruc-
tion is likely to have been pre-fetched some time previous to
its access time and will already be in the process of being
fetched.

“Last flag” annotations in NFA instructions may be used to
minimize the unnecessary pre-fetching of instructions unre-
lated to a current rule. This may happen when a rule would
terminate, but the instruction pre-fetch was processed for
instructions beyond the current rule instructions. This may be
accomplished by using such techniques as depth-first-search
(DFS) ordering of NFA instructions to group the instructions
for each rule together and substantially in the order they will
be accessed to match each rule. The compiler will then iden-
tify the sequentially last instruction associated with each rule
and set a “last flag” in that instruction. This, in turn, may be
accomplished by setting a predetermined bit within the
instructions to ‘1°. Itis understood that there may be variances
in the manner in which a rule may flow through an NFA graph.
Accordingly, variances may be made to the setting of “last
flags”. For example, it is understood that there may be cir-
cumstances in which a single expression has multiple, long

10

15

20

25

30

35

40

45

50

55

60

65

6

branches of states. The last instruction in a major branch may
be flagged. Following instructions in another branch are not
likely to be accessed next. Another manner of handling vary-
ing circumstances may be to set a “last flag” on the final
instruction of any state that does not transition to another state
within the following few instructions, such as 16 instructions,
for example.

The “last flags™ are consumed by the cache. Accordingly, if
the cache encounters a “last flag” in an instruction that has
been fetched, the cache will drop data for all subsequent
fetches. In this manner, the cache will not be polluted with
fetches that occurred after the arrival of “last flag” instruction.

One purpose of “last flags™ is that the L1 Cache will not
pre-fetch across them. This is because the instructions fol-
lowing the last-flagged instruction should not be closely
related. In fact, the following instructions may be pollution as
noted above. This purpose can be enforced by one of at least
two methods. First, when a burst of multiple cache lines
fetched from external memory returns to the L1 cache, the
instructions are inspected for last flags prior to writing them
into the cache memory. “Last flags™ in the first cache line prior
to the position of the originally accessed instruction are
ignored. This is because they do not pertain to the rule being
matched. However, if any “last flag” appears in or after the
originally accessed instruction, the first one appearing causes
a special action. The containing cache line will be the last line
written into the cache memory. Any following cache lines are
discarded. This prevents cache lines entirely after the first
“last flag” from polluting the [.1 Cache.

Second, when an instruction is accessed in the L1 Cache,
and the B cache lines L, L+1, . . . L+B-1 are checked, if any
of'the cache lines is a “hit’ and contains a “last flag”, the first
such “last flag” also triggers special processing. Any misses
in higher cache lines are ignored and not fetched from exter-
nal memory. The result is that cache lines entirely after the
first “last flag” are not unnecessarily pre-fetched, thus reduc-
ing external memory access bandwidth. It also prevents
repeatedly pre-fetching the after—*last flag” cache lines and
dropping them when they may return.

An example of this is instructions starting with instruction
25 are accessed. However, instructions 25 through 30 are the
only instructions associated with the particular rule in con-
sideration. The compiler will flag “last” in instruction 30. On
the initial state fetch of instruction 25 when a state is activated
in the NFA, there may be a cache miss, resulting in fetching
lines 6-9, or instructions 24-39, from external memory. This
computes where each cache line is 4 instructions long so that
line 6 equals instructions 24-27, line 7 equals instructions
28-31, line 8 equals instructions 32-35 and line 9 equals
instructions 36-39. As the instructions are fetched and
returned to the cache, instruction 30 in cache line 7 is seen by
the cache to have a last flag set. Lines 6 and 7 are written into
the cache memory but lines 8 and 9 are dropped. This avoids
polluting the cache. Next, instruction 26 will be accessed.
When access occurs, lines 6-9 are checked again. As noted,
this is done regularly to ensure that future cache lines will be
present when needed. Lines 6-7 will hit. Lines 8-9 will miss
due to the fact that they were just previously dropped due to
the “last flag” annotation in an instruction in line 7. The cache
instructions are re-checked and because line 7 still contains a
last flag in instruction 30, the misses are ignored and lines 8-9
are not fetched.

The “last flag” component in instructions eliminates a sub-
stantial amount of L1 Cache pollution by instructions which
are irrelevant to the rule being matched. It also reduces unnec-

US 9,046,916 B2

7

essary external memory pre-fetch bandwidth, but it leaves
some unnecessary pre-fetch bandwidth for .1 Cache misses
on initial state accesses.

Another component, used in initial state accesses, may be
“tail length” fields. The external engine is programmed to
match rule beginnings. The external engine will then signal to
the NFA cell array to activate an associated NFA state at an
associated input stream position. The activation signal from
the external engine will contain certain information about the
target NFA state. This may include the address of the first
instruction for the NFA state and the number of instructions
for that state. These may reside in instructions compiled for
the DFA engine or hash tables utilized as the external engine.
The compiler writing the external engine instructions will
examine the NFA instructions being referenced and count the
number of instructions to the first “last flag” appearing. The
count may, or may not, include the instructions of the initial
state itself. The count is then encoded as a “tail length” field
in the external engine instructions along with the initial NFA
state reference. The “tail length” encoding and NFA state
reference are signaled to the NFA cell array .1 Cache as part
of'the initial state fetch request. When the [.1 Cache processes
an initial state fetch request containing a tail length field, it
will limit the pre-fetch to the indicated length. This is where
it can expect to find a last flag. As with the “last flags™, this
will prevent wasted pre-fetch bandwidth and possible L1
Cache pollution.

“Tail length” fields may also be used in NFA instructions.
For example, whenever an NFA instruction contains a refer-
ence to a next state, a “tail length” field can also be present.
This will indicate the remaining instructions after (or includ-
ing) the next state to a “last flag”. Alternatively, only some
NFA instructions with next state references may contain a
“tail length” field, such as if certain instruction formats do not
have room for that field. An NFA cell programmed with such
an instruction will store the “tail length” field along with the
next state reference and this will be submitted to the L1 Cache
when the cell generates an .1 Cache request for its next state.
Due to “last flag” processing, “tail length” fields in NFA
instructions are often superfluous. However, they can be uti-
lized if the next last flag is not present in the .1 Cache because
its instruction has been evicted, or because the next state
reference jumps to a distant address that has not been pre-
fetched.

If'tail length fields always appear in NFA instructions with
next state references, then actual “last flags™ are not neces-
sary. Every L1 Cache assess will carry a tail length to prevent
cache pollution and unnecessary pre-fetch bandwidth. This
will be accomplished without “last flag” processing. How-
ever, it may be more expensive to include “tail length” fields
in all NFA instructions with next state references than to
include tail length fields only with initial state references in
instructions for the external engine. In such a case, both “last
flags” and “tail length” fields may be used.

The foregoing description of the invention has been pre-
sented for purposes of illustration and description. It is not
intended to be exhaustive or to limit the invention to the
precise form disclosed, and other modifications and varia-
tions may be possible in light of the above teachings. The
embodiment was chosen and described in order to best
explain the principles of the invention and its practical appli-
cation to thereby enable others skilled in the art to best utilize
the invention in various embodiments and various modifica-
tions as are suited to the particular use contemplated. It is
intended that the appended claims be construed to include
other alternative embodiments of the invention except insofar
as limited by the prior art.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

What is claimed is:

1. A method for fetching instructions for an NFA in a
dynamically configurable NFA cell array, said method com-
prising:

requesting an instruction from an L1 cache for an NFA

state in the cell array;

determining, by the cache, if a cache line for the requested

instruction is present in the cache and if at least one
successive cache line is present in the cache;

if the cache line is absent, fetching the cache line from an

external memory;

if the at least one successive cache line is absent, fetching

the successive cache line from an external memory;

if the cache line is present, returning the requested instruc-

tion;

encoding a last flag in at least one instruction;

if a previous returning cache line contains a last flag, dis-

carding subsequent fetched cache lines returning to the
cache; and

if a previous cache line present in the cache contains a last

flag, suppressing fetching a cache line absent from the
cache.

2. The method of claim 1, wherein each cache line com-
prises at least two instructions.

3. The method of claim 1, wherein the step of determining
if a cache line is present comprises determining the presence
of multiple cache lines in parallel within multiple indepen-
dently addressable tag memory banks.

4. The method of claim 3, wherein:

tags for sequential cache lines are interleaved among the

tag memory banks; and

said tags for any series of consecutive cache lines equal in

number to the number oftag memory banks reside as one
tag in each bank.

5. The method of claim 4, said method further comprising
providing tail length information along with the request for an
instruction.

6. The method of claim 5, wherein the number of said
successive cache lines fetched from external memory in
response to said request is limited by the tail length informa-
tion provided with said request.

7. The method of claim 1, wherein:

the NFA represents a set of rules; and

the sequentially last instruction associated with each rule is

flagged with a last flag.

8. The method of claim 1, wherein the final instruction of a
major branch of the NFA is flagged with a last flag.

9. The method of claim 1, wherein the final instruction of
any state that does not transition to another state within a
predetermined number of instructions is flagged with a last
flag.

10. The method of claim 1, wherein the step of determining
if a cache line is present comprises determining the presence
of multiple cache lines in parallel within multiple indepen-
dently addressable tag memory banks.

11. The method of claim 10, wherein:

tags for sequential cache lines are interleaved among the

tag memory banks; and

said tags for any series of consecutive cache lines equal in

number to the number oftag memory banks reside as one
tag in each bank.

12. The method of claim 1, said method further comprising
providing tail length information along with the request for an
instruction.

13. The method of claim 12, wherein the number of said
successive cache lines fetched from external memory in

US 9,046,916 B2

9

response to said request is limited by the tail length informa-
tion provided with said request.

14. The method of claim 13, wherein said tail length infor-
mation is encoded in a parent state instruction comprising a
reference to said requested instruction, said method further
comprising obtaining said tail length information from said
parent state instruction to provide with said request.

15. A system for pre-fetching instructions for an NFA in a
dynamically configurable NFA cell array, comprising:

an external memory that stores all of the NFA instructions;

a cache line fetcher enabled to access instructions from
said external memory; and

an L1 cache, wherein said .1 cache comprises a plurality
of separately addressable tag memory banks, said banks
being enabled to store tags for a predetermined number
cache lines from the external memory in an interleaved
manner;

wherein said [.1 cache is accessible and searchable by the
NFA cell array and each time the [.1 cache is accessed to
read an NFA instruction, multiple tag memory banks are
accessed in parallel;

10

15

20

10

wherein if a miss results from the search for said cache line
and successive cache lines then at least one cache line is
fetched from the external memory to fill all missed cache
lines into the LL1 cache;

wherein at least one instruction comprises a last flag, and

wherein:

if a previous returning cache line contains a last flag,
subsequent fetched cache lines returning to the cache
are discarded; and

if a previous cache line present in the cache contains a
last flag, a fetch request for a cache line absent from
the cache is suppressed.

16. The system of claim 15, wherein in a single access cycle
the L1 cache is searched for a cache line containing the
accessed instruction and for the next successive cache lines.

17. The system of claim 15, wherein the L1 cache is
enabled to limit the number of next successive cache lines
fetched according to a tail length parameter provided with an
instruction request.

18. The system of claim 15, wherein the L1 cache is
enabled to limit the number of next successive cache lines
fetched according to a tail length parameter provided with an
instruction request.

